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Abstract—In the recent years, Large-Scale Global Optimiza-
tion (LSGO) algorithms attempt to solve real-world problems
efficiently. The imbalance in the contribution of variables and
the interaction among variables pose major challenges for LSGO
algorithms. This paper proposes mapping schemes based on the
interaction among variables and the imbalance in the contribution
of variables. The proposed mapping schemes present the different
relations between the constructed class of variables according
to the interaction feature and the constructed class of variables
according to the imbalance feature. Covering a wide range of real-
world problems is considered in the mapping schemes; therefore
it can provide some insights to design LSGO benchmark suites.
By developing LSGO benchmark suites with the ability of repre-
senting many-real world problems, researchers will be motivated
to realize the success or failure level of LSGO algorithms for
tackling various types of LSGO problems. Also, a preliminary
set of experiments is conducted to present the importance of
considered features in each scheme.

I. INTRODUCTION

Many science and engineering applications include a large
number of decision variables, known as Large-Scale Global
Optimization (LSGO) problems, such as, designing large-scale
electronic systems, scheduling problems with the large number
of resources, vehicle routing in large-scale traffic networks,
gene recognition in bioinformatics, inverse problem chemical
kinetics, etc. Recently, a large number of the metaheuristic
algorithms have been proposed to handle the LSGO problems.
The canonical metaheuristic algorithms for solving LSGO
problems suffer from main deficiency, curse of dimensionality.
The major challenges for the performance deterioration of
these algorithms are: firstly, the feasible search space grows
exponentially with the increase in dimensionality; secondly, in-
creasing size of the problem dimension increases its landscape
complexity and characteristic alteration. The LSGO algorithms
are classified into two main categories: namely, Cooperative
Coevolution (CC) algorithms with the problem decomposition
strategy, and non-decomposition based methods. The CC-based
approaches are a promising approach to solve LSGO problems
[2], [24], [25], [26], [27]. The CC algorithms decompose the
LSGO problems into several smaller subcomponents using a
decomposition method, and each subcomponent of variables is
optimized by a certain optimizer.

Other major challenges which pose complicated difficulties
for LSGO algorithms are: the interaction among variables (i.e.,
level of non-separability) and the imbalance in the contribution
of variables on the fitness value [1], [2], [3]. Two variables are

non-separable if they cannot be optimized independently to
find the global optimum. Recently, most of LSGO algorithms
have been developed to solve non-separable LSGO problems.
Recently, an imbalance feature was proposed in [1], [3] to
develop large-scale optimization benchmark suites for better
approximating real-world problems, i.e., problems have some
imbalance effects among different subcomponents. Only a lim-
ited number of research works have been proposed to solve the
imbalance LSGO problems. A Contribution Based Cooperative
Co-evolution (CBCC) method was proposed by Omidvar et
al. [2], [4], [5]. In the CBCC method, the subcomponent with
the maximum effect on the global fitness value is selected for
further optimization. Two versions of CBCC method, CBCC1
and CBCC2, are proposed where CBCC1 optimizes the se-
lected subcomponent for only one iteration; while CBCC2
optimizes it until the fitness value is improved. Mahdavi et
al. [6] proposed a multilevel optimization framework based
on variables effect (MOFBVE). In MOFBVE, first variables
with the most influence on the objective function are identified
and optimized in the different levels while the values of
unimportant variables, i.e., variables with less effect are fixed.
MOFBVE contains the several levels with a low-dimension
search space of the most influence variables on the fitness value
to obtain fitter initial sub-solutions for the original search space
as the last level.

In [3], some crucial design features of the CEC-2013
LSGO benchmark test functions were described in more details
to provide some guidelines for the design of LSGO benchmark
test functions. Although research works in [1], [3] have been
developed to the design of LSGO benchmark test functions,
they do not pay enough attention to consider the relations
between the interaction among variables and the imbalance in
the contribution of variables. In this paper, we introduce the
new mapping schemes to study the relations among variables
which are constructed according to two major features, the in-
teraction among variables and the imbalance in the contribution
of variables, in the LSGO problems. Although some studies in-
vestigated the aspects of two features, they are not sufficient to
cover all kinds of LSGO problems comprehensively. Mapping
schemes can better resemble a wider range of LSGO real-world
problems and introduce some guidelines to develop benchmark
suites for LSGO problems. Also, a preliminary comparative
experiments are conducted to demonstrate a general overview
of these features on each mapping scheme.

The organization of the rest of this paper is as follows.
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Section 2 gives a brief background review of LSGO algo-
rithms. Section 3 describes proposed schemes in detail. Section
4 presents a simple algorithm and the experimental results to
support discussion on the proposed schemes. Finally, the paper
is concluded in Section 5.

II. BACKGROUND REVIEW

Generally, LSGO algorithms can be divided into two
main categorizes, namely, Cooperative Coevolution (CC) al-
gorithms with problem decomposition strategy [7], [8], and
non-decomposition based methods [9]. In non-decomposition-
based methods, the specific effective operators are developed to
enhance the metaheuristic algorithms. Over the past decades,
various metaheuristic optimization algorithms including Parti-
cle Swarm Optimization (PSO) [10], [11], [12], Evolutionary
Algorithms (EAs)[13], [14], Differential Evolution (DE) [15],
[16], [17], [18], [19], [20], and Tabu search algorithm [21]
have been proposed with focus on the especial alteration such
as defining new mutation, selection, and crossover operators,
designing and using local search, opposition-based learning
[22], [18], sampling operator, hybridization, and incremental
or reduction population size methods. The CC algorithms
are based on divide-and-conquer approach which decomposes
LSGO problems into several low dimensional subcomponents.
The main steps of CC framework are as follows: Step 1:
Problem decomposition: Dividing an LSGO into some smaller
sub-components, Step 2: Subcomponent optimization: Exe-
cuting individually a traditional optimization algorithm to
evolve each subcomponent for predefined iterations in a round-
robin method, Step 3: Cooperative combination: Merging the
solutions of all subcomponents to construct the n-dimensional
solution to evaluate the individuals in each of the subcompo-
nents.

A variety of metaheuristic optimization algorithms have
been incorporated into the CC framework for tackling LSGO
problems such as evolutionary programming [23], Particle
Swarm Optimization (PSO) [24], [25], [26], [27], Artificial Bee
Colony (ABC)[28], Evolutionary Algorithms (EAs) [23], [29],
and Differential Evolution (DE) [30], [31]. In addition, several
large-scale benchmark functions were developed to compare
LSGO algorithms. In [1], the CEC-2013 LSGO benchmark
functions were introduced with new transformations such as
ill-conditioning, symmetry breaking, irregularities, and having
subcomponents with non-uniform subcomponent sizes. The
standard CC algorithms with the round-robin method divide
computational resources equally among subcomponents. The
performance of these algorithms deteriorates on the imbalance
LSGO problems because by using the round-robin method,
a number of the computational budget may be wasted by
some subcomponents with a little contribution in the overall
fitness value. The CBCC methods attempt to assign more
computational budget to the subcomponent with the maximum
contribution. For more information on LSGO algorithms, the
reader is referred to [9]; a survey paper which has been
published recently, covering the CC and non-decomposition
based methods to solve LSGO problems.

III. PROPOSED MAPPING SCHEMES BASED ON
INTERACTION AND CONTRIBUTION VARIABLE FEATURES

The LSGO problems have two major challenging features:
the interaction among variables and the imbalance effect of
variables. All decision variables according to the interactions
among variables are divided into two general classes: separable
and non-separable. There are three general classes of problems
according to the variable interaction feature: fully-separable,
partially-separable, and fully-non-separable functions [1], [32].
In fully-separable, there is no interaction between any pair of
variables. A general form of the partially-separable problems
according to the interactions of variables is defined as follow-
ing formula:

F (~x) =
m−1∑
i=1

fnonsep
i (xi) + fsep

m (xm),

xi = [xIi(1), . . . , xIi(ni)]

where xi is mutually exclusive decision vectors of fi, X =
x1, . . . , xD is a global decision vector of D dimensions, and
m(> 1) is the number of independent subcomponents. Also,
Ii is the index subset of decision variables corresponding to
subcomponent i and ni is the number of variables in the
subcomponent i. fnonsep

i and fsep
m indicate the non-separable

and separable subcomponents.

Several non-separable subcomponents of interacting vari-
ables with no interaction among subcomponents and a sepa-
rable subcomponent including all separable variables are con-
structed. It should be noted that a partially-separable problem
may include only a set of non-separable subcomponents and no
separable sub-component. Furthermore, all decision variables
are divided based on their contributions on the fitness value
into two classes: significant and non-significant. A general
form of the problems according to the imbalance in the
contribution of variables and the interaction among variables
together is defined as following formula:

F (~x) =
m−1∑
i=1

wi.f
nonsep
i (xi) + fsep

m (xm),

xi = [xIi(1), . . . , xIi(ni)]

where wi is a generated weight to create the imbalance
effect. In a problem with m subcomponents, we can sort all
subcomponents (s1 . . . sm) according to their effect on the
fitness value as follows:

s1 > s2 > · · · > sm s.t w1 > w2 > · · · > wm

The significant class includes subcomponents with the most
influence on the objective function. Based on the descending
arrangement of subcomponents, the significant class consists
of the first k subcomponents with the first k maximum weights
and all other subcomponents belong to the non-significant
class. The parameter k is arbitrary, for instance if we set k to 1,
then the significant class includes only the subcomponent with
the maximum effect and all other subcomponents are placed
in the non-significant class. The value of the parameter k
depends on the importance using the information of variables’
effect in the LSGO algorithms. In this section, we introduce
new mapping schemes to analyze relationships between two
categories of variables and their overlap based on two major
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features, the interaction among variables and the imbalance in
the contribution of variables. These mapping schemes demon-
strate the relationships of different classes to better resemble a
wider range of LSGO real-world problems. Moreover, each
mapping scheme has the different importance to represent
the real-world problems; it is hard to find only one scheme
for all LSGO real-world problems. The most flexible way to
create the imbalance among subcomponents is to weight each
subcomponent differently [3] therefore in this way, the formal
descriptions of mapping schemes are defined by assigning
weights for sub-components. In a black-box problem, the
recent CC algorithms can identify interaction among variables
and construct the non-separable subcomponents and separa-
ble subcomponent. Furthermore, by using sensitivity analysis
methods [33], [34], the effect of variables in a black-box
problem can be computed. By identifying interaction among
variables and the imbalance in the contribution of variables,
we can recognize which scheme follows a black-box problem.

A. Scheme 1

This mapping scheme illustrates a particular case of prob-
lems that all non-separable subcomponents are in the signif-
icant class and the separable subcomponent is in the non-
significant class. As mentioned above, the significant class
consists of the first k subcomponents with the first k maximum
weights. Therefore, the weights of non-separable subcompo-
nents must be a value between the minimum and maximum
weights of the subcomponents in the significant set which
is constructed based on the value k. Also, the separable
subcomponent is in the non-significant class therefore the
weight of separable subcomponent less than all weights of non-
separable subcomponents. A formal description of the mapping
scheme 1 is defined as follows:

F (~x) =
m−1∑
i=1

wi.f
nonsep
i (xi) + wm.fsep

m (xm)wm < wi (1)

Fig. 1 shows a schematic of scheme 1 which represents the
relation and overlap among the classes.

Significant = Non-separable Separable = Non-significant

Significant class = Non-separable class
Separable class = Non-significant class

Fig. 1: Scheme 1

B. Scheme 2

Under this mapping scheme, the separable subcomponent
belongs to the significant class and all non-separable sub-
components belong to the non-significant class. Therefore, the
weights of the separable subcomponent must be greater than
the weights of all non-separable subcomponents. A formal
description of the scheme 2 is defined as follows:

F (~x) =
m−1∑
i=1

wi.f
nonsep
i (xi) + wm.fsep

m (xm), (2)

(∀i, i = 1, . . . ,m− 1), wm > wi

Fig. 2 shows a schematic of scheme 2 which represents the
relation and overlap among the classes.

Non-Significant=Non-separable Separable = Significant

Non-significant class =Non-separable class
Separable class = Significant class

Fig. 2: Scheme 2

C. Scheme 3

In this mapping scheme, the separable subcomponent has
some variables in the significant class and some variables
in the non-significant class as well. Moreover, all the non-
separable subcomponents belong to non-significant class. A
formal description of the mapping scheme 3 is defined as
follows:

F (~x) =

m−1∑
i=1

wi.f
nonsep
i (xi) + (3)

wm.fsep
m (xm) + wm+1.f

sep
m (xm+1) (4)

(∀i, i = 1, . . . ,m), wm+1 > wi

The mapping scheme assumes that the value k is set to 1
therefore the significant class includes only the separable sub-
component with the maximum effect. Fig. 3 shows a schematic
of scheme 3 which represents the relation and overlap among
the classes.

Non-significant =Non-separable

Non-significant class =Non-separable class
Separable class = Significant class        Non-significant class

Non-significant

Significant

Fig. 3: Scheme 3

D. Scheme 4

The mapping scheme 4 demonstrates a case of prob-
lems that the non-separable subcomponents have the different
weights to generate the imbalance such that some of the non-
separable subcomponents are belonging to the non-significant
and other non-separable subcomponents are in the significant
class. The separable subcomponent is in the non-significant
class. A formal description of the mapping scheme 4 is defined
as follows:

F (~x) =
m−1∑
i=1

wi.f
nonsep
i (xi) + wm.fsep

m (xm) (5)

(∀i, i = 1, . . . , k), (∀j, j = k + 1, . . . ,m), wi > wj

Where k is the number of significant subcomponents in the
significant class as mentioned above. Fig. 4 shows a schematic
of scheme 4 which represents the relation and overlap among
the classes.
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Non-significant =Separable
Non-significant

Significant

Non-significant class = Separable class
Non-separable class = Significant class         Non-significant class

Fig. 4: Scheme 4

E. Scheme 5

Under this mapping scheme, the significant class con-
tains some non-separable subcomponents and the separable
subcomponent. Also, the other non-separable subcomponents
belong to the non-significant class. A formal description of the
mapping scheme 5 is defined as follows:

F (~x) =
k∑

i=1

wi.f
nonsep
i (xi) +

m−1∑
i=k+1

wi.f
nonsep
i (xi) (6)

+wm.fsep
m (xm) (∀i, i = 1, . . . , k& i = m), (7)

(∀j, j = k + 1, . . . ,m− 1), wi > wj

Where k is the number of significant subcomponents in the
significant class as mentioned above. Fig. 5 shows a schematic
of scheme 5 which represents the relation and overlap among
the classes.

Significant =Separable

Non-significant

Significant


Significant class = Separable class

Non-separable class = Significant class        Non-significant class

Fig. 5: Scheme 5

F. Scheme 6

In this mapping scheme, the significant class includes all
non-separable subcomponents and some separable variables as
well. The other separable variables are the members of the non-
significant class. A formal description of the mapping scheme
6 is defined as follows:

F (~x) =
m−1∑
i=1

wi.f
nonsep
i (xi) + wm.fsep

m (xm) + (8)

wm+1.f
sep
m+1(xm+1) (9)

(∀i, i = 1, . . . ,m− 1& i = m), wi > wm+1

Fig. 6 shows a schematic of scheme 6 which represents the
relation and overlap among the classes.

G. Scheme 7

Both non-significant and significant classes have the el-
ements of non-separable and separable subcomponents. A

Significant =Non-separable

Non-significant

Significant

Significant class = Non-separable class
Separable class = Significant class        Non-significant class

Fig. 6: Scheme 6

formal description of the mapping scheme 7 is defined as
follows:

F (~x) =
k∑

i=1

wi.f
nonsep
i (xi) +

m−1∑
i=k+1

wi.f
nonsep
i (xi)(10)

+wm.fsep
m (xm) (∀i, i = 1, . . . , k& i = m),(11)

(∀j, j = k + 1, . . . ,m− 1& j = m+ 1), wi > wj

Fig. 7 shows a schematic of scheme 7 which represents the
relation and overlap among the classes.

Non-significant

Significant

Non-separable class =Significant class        Non-significant class
Separable class = Significant class         Non-significant class




Non-significant

Significant

Separable Non-Separable

Fig. 7: Scheme 7

H. Scheme 8

This mapping scheme contains partially-separable prob-
lems with only a set of non-separable subcomponents and
no fully-separable subcomponent. In the scheme, some non-
separable subcomponents are inside significant class and other
significant class inside non-significant class. A formal descrip-
tion of the mapping scheme 8 is defined as follows:

F (~x) =

m∑
i=1

wi.f
nonsep
i (xi) (12)

Fig. 8 shows a schematic of scheme 8 which represents the
relation and overlap among the classes

Non-significant

Significant


Non-Separable

Non-separable class =Significant class        Non-significant class

Fig. 8: Scheme 8

I. Scheme 9

This mapping scheme contains separable problems. Some
separable variables are inside significant class and other sepa-
rable variables inside non-significant class. Generally, each two
non-significant and significant classes have one subcomponent
therefore the weight of subcomponent in the significant class
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must be greater than the weights of subcomponent in the non-
significant. A formal description of the mapping scheme 9 is
defined as follows:

F (~x) = w1.f
sep
1 (x1) + w2.f

sep
2 (x2)w2 > w1 (13)

Fig. 9 shows a schematic of scheme 9 which represents the
relation and overlap among the classes.

Non-significant

Significant


Separable

Separable class =Significant class        Non-significant class

Fig. 9: Scheme 9

IV. EXPERIMENTS

This section first used a simple algorithm similar to
MOFBVE [6] to consider imbalance feature on the LSGO
algorithms, then reports the obtained results on all mapping
schemes. The results reported in this study give a general
overview of considering imbalance and interaction variables
by proposing mapping schemes as a platform to systematically
study these features of variables therefore much more effort is
needed to investigate further the analysis of mapping schemes
and optimal algorithms; which is beyond the scope of this pa-
per. In order to analyze the impact of using imbalance feature
on the LSGO algorithms, we implemented a simple method
(CC-ideal1); the CC algorithm with the ideal decomposition
method (CC-ideal). Both CC-ideal1 and CC-ideal employ
the ideal decomposition method as decomposition method in
their CC framework which the ideal decomposition method
constructs subcomponents manually using the knowledge of
benchmark functions. In CC-ideal, after building subcompo-
nents, it optimizes subcomponents individually in a round-
robin fashion but CC-ideal1 utilizes the imbalance knowledge
of a given problem to recognize the significant subcomponent
with maximum contribution on the fitness value. The main
idea of CC-ideal1 is that, first; the significant subcomponent
is identified by the imbalance knowledge of a problem and
optimized instead of the whole decision variables at a few
iterations before beginning of the optimization process in
the CC-ideal algorithm. When this subcomponent is being
optimized, all other variables are kept fixed. The best mem-
bers of initialization populations are employed to the other
variables. Then, the obtained solutions from the optimization
of the significant subcomponent will be used as the initial
population at process in the CC-ideal algorithm. Furthermore,
the significant subcomponent is optimized at a few determined
iterations (10D1 or 20D1, where D1 is the dimension of the
significant subcomponent).

A. Numerical Results

In this section, we provided a preliminary series of experi-
ments to indicate a general overview of how on each mapping
scheme, using the significant variables can affect on the
performance of the CC algorithm with the ideal decomposition
method (CC-ideal). We used some partially separable functions
which are based on the CEC-2013 LSGO benchmark suit to

a preliminary comparison of CC-ideal algorithm with CC-
ideal algorithm using the significant subcomponent (called
CC-ideal1). For CC-ideal algorithm, 2 (f4 and f7) partially
separable functions are changed to cover first 7 mapping
schemes; respectively. These functions (f4, f5, and f7) have
a set of non-separable subcomponents and one fully-separable
subcomponent. In scheme 1, for all functions, the weight of
all non-separable subcomponents is changed to the maximum
weight of subcomponents in the CEC-2013 LSGO benchmark
suite. For all functions of scheme 2, the weight of all non-
separable subcomponents is changed to 1 and the weight
of all non-separable subcomponents is assigned to the fully-
separable subcomponent.

In scheme 3, the fully-separable subcomponent is divided
into two separable subcomponents with the same size (350)
and 1 and 106 weights which is greater than the maximum
weight of non-separable subcomponents. The partially sepa-
rable functions in the CEC-2013 LSGO benchmark suite are
in scheme 4. For scheme 5, the maximum weight of non-
separable subcomponents is assigned to the fully-separable
subcomponent. For all functions of scheme 6, the weight of
all non-separable subcomponents is changed to the maximum
weight of subcomponents in the CEC-2013 LSGO benchmark
suite. Then, the fully-separable subcomponent is divided to two
separable subcomponents with same size (350) which have the
weights 1 and same weight with non-separable subcomponents.
In scheme 7, the fully-separable subcomponent is divided to
two separable subcomponents with same size (350) which
have the weights 1 and the maximum weight of non-separable
subcomponents. All functions of scheme 8 (f8,f9, and f10)
are selected from the CEC-2013 LSGO benchmark suite
without any change. Functions of scheme 9 are three separable
functions (f1, f2, and f3) in the CEC-2013 LSGO benchmark
suite which 200 variables of problems have weight 106. Also,
a two-sided Wilcoxon statistical test with a confidence interval
of 95% is performed for comparison of algorithms; the better
results are highlighted in bold-face. In this study, the maximum
number of evaluations was set to 3 × 106, the population
size was set to 50, and all algorithms were evaluated for 25
independent runs and the results were recorded.

1) Results for scheme 1: Table I shows the results of
CC-ideal and CC-ideal1 algorithms. From Table I that in
comparison with CC-ideal, CC-ideal1 can obtain better results
on all two test functions.

TABLE I: Results of CC-ideal and CC-ideal1 on the scheme 1.

Function CC-ideal CC-ideal1

f4
Mean 4.34e+11 1.10e+11
std 5.12e+10 2.20e+10

f7
Mean 2.28e+10 2.00e+09
std 5.81e+09 3.88e+09

2) Results for scheme 2: Table II shows the results of CC-
ideal and CC-ideal1 algorithms. It can been seen from Tables
II that CC-ideal have the worse results compared to CC-ideal1.
Based on results, when the significant class contains only all
separable variables, the performance of CC-ideal1 is degraded.

3) Results for scheme 3: Table III show the results of CC-
ideal and CC-ideal1 algorithms. It is obvious from Table III
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TABLE II: Results of CC-ideal and CC-ideal1 on the scheme 2.

Function CC-ideal CC-ideal1

f4
Mean 4.23e+12 6.51e+12
std 6.47e+12 5.26e+12

f7
Mean 2.99e+09 5.79e+09
std 2.16e+09 4.97e+09

that in comparison with CC-ideal, CC-ideal1 can obtain better
results on all two test functions. These results indicate that, in
the scheme 3, using significant subcomponents can improve
the efficiencies of CC-ideal algorithm.

TABLE III: Results of CC-ideal and CC-ideal1 on the scheme 3.

Function CC-ideal CC-ideal1

f4
Mean 4.65e+10 1.93e+10
std 1.63e+10 2.15e+10

f7
Mean 5.45e+07 5.03e+06
std 1.95e+07 7.91e+06

4) Results for scheme 4: Table IV shows the results of CC-
ideal and CC-ideal1 algorithms. It is obvious from Table IV
that in comparison with CC-ideal, CC-ideal1 can obtain better
results on all two test functions. These results indicate that, in
the scheme 4, using significant subcomponents can improve
the efficiencies of CC-ideal algorithm.

TABLE IV: Results of CC-ideal and CC-ideal1 on the scheme 4.

Function CC-ideal CC-ideal1

f4
Mean 4.97e+10 4.81e+08
std 1.97e+10 1.77e+08

f7
Mean 6.33e+07 3.06e+07
std 2.36e+07 5.24e+07

5) Results for scheme 5: Table V shows the results of
CC-ideal and CC-ideal1 algorithms. It is obvious from Table
V that the results of CC-ideal are better than or comparable
to CC-ideal1 on all two test functions. As mentioned above,
once again these results indicate that, in the scheme 5, using
significant subcomponents can lead to degrade the performance
of CC-ideal1 algorithm when the significant class contains only
all separable variables like scheme 2.

TABLE V: Results of CC-ideal and CC-ideal1 on the scheme 5.

Function CC-ideal CC-ideal1

f4
Mean 9.84e+10 1.08e+11
std 6.83e+10 6.87e+10

f7
Mean 1.70e+08 4.50e+08
std 9.82e+07 2.03e+08

6) Results for scheme 6: Table VI shows the results of
CC-ideal and CC-ideal1 algorithms. It is obvious from Table
VI that in comparison with CC-ideal, CC-ideal1 can obtain
better results on all two test functions. These results indicate
that, in the scheme 6, using significant subcomponents can
improve the efficiencies of CC-ideal algorithm. In scheme 1,
the significant class contains all non-separable subcomponents
while in this scheme some of all non-separable subcomponents

are in the significant class. In both schemes 1 and 6, using
significant subcomponents can improve the efficiencies of CC-
ideal algorithm on these benchmark functions.

TABLE VI: Results of CC-ideal and CC-ideal1 on the scheme 6.

Function CC-ideal CC-ideal1

f4
Mean 4.38e+11 2.36e+11
std 4.96e+10 1.20e+11

f7
Mean 2.51e+10 2.63e+09
std 4.31e+09 9.13e+08

7) Results for scheme 7: Table VII shows the results of
CC-ideal and CC-ideal1 algorithms. From Table VII that in
comparison with CC-ideal, CC-ideal1 can obtain better results
on all two test functions. Based on results, it is expected that
the performance of CC algorithms is enhanced significantly
especially when two non-significant and significant classes
have the non-separable and separable subcomponents together.

TABLE VII: Results of CC-ideal and CC-ideal1 on the scheme 7.

Function CC-ideal CC-ideal1

f4
Mean 5.09e+10 4.17e+09
std 1.90e+10 2.27e+09

f7
Mean 6.22e+07 2.75e+06
std 2.45e+07 3.59e+06

8) Results for scheme 8: Table VIII shows the results
of CC-ideal and CC-ideal1 algorithms. It is obvious from
Table VIII that in comparison with CC-ideal, CC-ideal1 can
obtain better results on two test functions although CC-ideal
outperforms CC-ideal1 on only one function.

TABLE VIII: Results of CC-ideal and CC-ideal1 on the scheme 8.

Function CC-ideal CC-ideal1

f8
Mean 4.86e+15 4.86e+14
std 1.85e+15 1.96e+15

f9
Mean 4.97e+08 4.31e+08
std 3.53e+07 9.50e+07

f10
Mean 1.64e+01 6.41e+01
std 1.96e+01 2.58e+01

9) Results for scheme 9: Table IX shows the results of
CC-ideal and CC-ideal1 algorithms. It is obvious from Table
IX that in comparison with CC-ideal1, CC-ideal1 can obtain
better results on one test functions.

TABLE IX: Results of CC-ideal and CC-ideal1 on the scheme 9.

Function CC-ideal CC-ideal1

f1
Mean 2.99e+06 2.58e+06
std 1.19e+06 3.65e+06

f2
Mean 3.50e+08 3.50e+08
std 5.34e+07 5.35e+07

f3
Mean 2.19e+06 2.57e+06
std 2.97e+05 3.95e+05

V. DISCUSSIONS ON THE LSGO BENCHMARK SUIT AND
LSGO ALGORITHMS

Based on the proposed schemes, the design of new LSGO
benchmark test functions becomes an essential challenge to
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cover the characteristics of real-world problems. In following,
we describe some potential areas of improvement and chal-
lenges which motivate interested researchers in LSGO fields to
investigate some possible modifications of LSGO benchmark
test functions and also describing how LSGO algorithms can
be influenced by considering all features in the design of the
LSGO benchmark suit.

1) Identifying the significant variables
In all mentioned classes in all mapping schemes, a
critical task is identifying the significant variables. A
main factor of identifying the significant variable are
the size and weight subcomponents. For example, in
the function w1.f

nonsep
1 (x1)+w2.f

sep
2 (x2) with 1000

variables including a class of non-separable subcom-
ponent and a class of separable subcomponent. For
example if we know w1 > w2, it will be definitely
asked; is the non-separable subcomponent with the
greater weight always located in the significant class?
Obviously, the answer of this question relies on some
factors; (1) the number of non-separable variables
against the number of separable variables; for in-
stance if there are only 10 non-separable variables
among 1000 variables and all other variables be
separable so it is hard to have a certain response
for this question. In fact, the size of a subcomponent
can play a key role to make this subcomponent as
the significant subcomponent which has a higher
contribution on the overall objective function. (2)
the weight of each subcomponent; for instance in
the function w1.f

nonsep
1 (x1) + w2.f

nonsep
2 (x2) with

1000 variables including two classes of non-separable
subcomponents, when the weight of a subcomponent
is greater than other one (e.g., w2 > w1), it can
not be concluded that this subcomponent is definitely
located in the significant class. The reason for this is
that, two main factors should be considered which
they can influence on a subcomponent to have higher
contribution on the objective function as the signifi-
cant class; (1) how much is the difference among the
weights of subcomponents? (2) what is the number
of variables in subcomponents? Further research can
be directed to address unanswered questions in both
fields; LSGO benchmark test functions and LSGO
algorithms. Some of these questions are: How can
we identify the significant class by considering the
difference among the weights of all subcomponents
and also their size? How many variables can be
considered as significant variables? How the number
of significant variables can affect on the performance
of LSGO algorithms? What are differences among
the various values of variables’ contribution? How
can new optimization algorithms be developed based
on the amount of these differences? What is the
minimum value of differences among contributions
to be beneficial for optimization algorithms for con-
sidering significant variables? These questions may
be directly related to solving the given problem and
the optimization algorithm.

2) Impact of significant variables on the computational
budget assignment methods
A significant challenge of using significant variables

is how the LSGO algorithms can efficiently allocate
computational budget based on their contribution. In
the non-decomposition based methods, the number
of optimization iterations for significant variables
poses a challenge on these methods. In new proposed
schemes, it is desirable to investigate the optimal
budget assignment of significant variables. In [2], [3],
[4], a challenge was proposed for the CC algorithms
with the ability budget assignment such that they
can allocate the computational budget among all
subcomponents based on their different contributions
on the objective function. Also, it has shown that
assigning more budgets to the subcomponent with the
maximum contribution has a significant effect on the
performance of CC algorithms. In [3], it has shown
that a major challenge of contribution-based CC is
solving problems with the non-uniform weighting of
the subcomponents. CBCC methods consider only
the subcomponent with the maximum contribution.
Further research can be directed to extend proper
budget assignment methods in order to use in CC
algorithms. It is desirable to introduce some major
aspects of budget assignment methods.
Another key aspect is investigating impact of sub-
components’ size. When a budget assignment method
is designed based on only the contributions of sub-
components, it may not reflect the effect of the size
of sub-components as mentioned before the size of
subcomponents can affect on their contribution on
the overall objective function. It is mentioned in
[3] that non-uniform dimensionality of subcomponent
and weighting approach create different contributions
of subcomponent; but some cases can be happened
that two subcomponents have approximately the same
contribution while they have the different dimension
sizes. For instance, if a problem has four subcompo-
nents with 50, 70, 100, and 120 dimensions such that
the weight of components with the size 50 be two
times more than the weight of components with the
size 100 so they have the same contribution. Another
aspect for budget assignment methods is determin-
ing types of mapping schemes which using budget
assignment method can improve the performance
of LSGO algorithms. Therefore, a great potential
future research works can be investigating thoroughly
the strengths and weaknesses of budget assignment
methods and finding definite reasons for good or poor
performance of these methods.

VI. CONCLUSIONS

In this paper, variant schemes were introduced according
to the interaction among variables and the imbalance in the
contribution of variables. These mapping schemes provide a
straightforward mapping to present a wide range of real-world
problems. According to the theorem of ”no free theorems”
[35], one algorithm cannot offer better performance than the
others in every aspect on all class of problems. Therefore, for
designing efficient algorithms we proposed mapping schemes
which consider the different type of problems as mapping
schemes which would be beneficial for find proper algo-
rithms for each class of problems. Preliminary experiments
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are conducted on all mapping schemes by modifying some
functions of the CEC-2013 LSGO benchmark suite to cover all
mapping schemes. The observations indicate that considering
imbalance feature by using mapping schemes has potential
to play a crucial role in LSGO algorithms. This study is
a preliminary investigation and introduction and we have
identified the following potential areas based on the pro-
posed mapping schemes of improvement and challenges which
motivate interested researchers in LSGO fields to investigate
the use of significant variables on these schemes: (1) the
design of computational budget assignment strategy for LSGO
algorithms to allocate computational budget according to the
contribution of variables, (2) the design of new benchmark test
functions based on the proposed schemes, (3) investigating the
impact of the dimension size of subcomponents on the budget
assignment method.
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